Modeling neural mechanisms for genesis of respiratory rhythm and pattern. I. Models of respiratory neurons.
نویسندگان
چکیده
The general objectives of our research, presented in this series of papers, were to develop a computational model of the brain stem respiratory neural network and to explore possible neural mechanisms that provide the genesis of respiratory oscillations and the specific firing patterns of respiratory neurons. The present paper describes models of single respiratory neurons that have been used as the elements in our network models of the central respiratory pattern generator presented in subsequent papers. The models of respiratory neurons were developed in the Hodgkin-Huxley style employing both physiological and biophysical data obtained from brain stem neurons in mammals. Two single respiratory neuron models were developed to match the two distinct firing behaviors of respiratory neurons described in vivo: neuron type I shows an adapting firing pattern in response to synaptic excitation, and neuron type II shows a ramp firing pattern during membrane depolarization after a period of synaptic inhibition. We found that a frequency ramp firing pattern can result from intrinsic membrane properties, specifically from the combined influence of calcium-dependent K(AHP)(Ca), low-threshold Ca(T) and K(A) channels. The neuron models with these ionic channels (type II) demonstrated ramp firing patterns similar to those recorded from respiratory neurons in vivo. Our simulations show that K(AHP)(Ca) channels in combination with high-threshold Ca(L) channels produce spike frequency adaptation during synaptic excitation. However, in combination with low-threshold Ca(T) channels, they cause a frequency ramp firing response after release from inhibition. This promotes a testable hypothesis that the main difference between the respiratory neurons that adapt (for example, early inspiratory, postinspiratory, and decrementing expiratory) and those that show ramp firing patterns (for example, ramp inspiratory and augmenting expiratory) consists of a ratio between the two types of calcium channels: Ca(L) channels predominate in the former and Ca(T) channels in the latter respiratory neuron types. We have analyzed the dependence of adapting and ramp firing patterns on maximal conductances of different ionic channels and values of synaptic drive. The effect of adjusting specific membrane conductances and synaptic interactions revealed plausible neuronal mechanisms that may underlie modulatory effects on respiratory neuron firing patterns and network performances. The results of computer simulation provide useful insight into functional significance of specific intrinsic membrane properties and their interactions with phasic synaptic inputs for a better understanding of respiratory neuron firing behavior.
منابع مشابه
Computational Motor Control: ERN
1. Duffin J (1991) A model of respiratory rhythm generation. Neuroreport 2:623–626 2. Richter D, Ballantyne D, Remmers JE (1986) How is the respiratory rhythm generated? A model. News Physiol Sci 1:109–112 3. Botros SM, Bruce EN (1990) Neural network implementation of the three-phase model of respiratory rhythm generation. Biol Cybern 63:143–153 4. Balis UJ, Morris KF, Koleski J, Lindsey BG (19...
متن کاملComputational models and emergent properties of respiratory neural networks.
Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-dri...
متن کاملModeling neural mechanisms for genesis of respiratory rhythm and pattern. II. Network models of the central respiratory pattern generator.
The present paper describes several models of the central respiratory pattern generator (CRPG) developed employing experimental data and current hypotheses for respiratory rhythmogenesis. Each CRPG model includes a network of respiratory neuron types (e.g., early inspiratory; ramp inspiratory; late inspiratory; decrementing expiratory; postinspiratory; stage II expiratory; stage II constant fir...
متن کاملModeling neural mechanisms for genesis of respiratory rhythm and pattern. III. Comparison of model performances during afferent nerve stimulation.
The goal of the present study was to evaluate the relative plausibility of the models of the central respiratory pattern generator (CRPG) proposed in our previous paper. To test the models, we compared changes in generated patterns with the experimentally observed alterations of the respiratory pattern induced by various stimuli applied to superior laryngeal (SLN), vagus and carotid sinus (CS) ...
متن کاملModeling the ponto-medullary respiratory network.
The generation and shaping of the respiratory motor pattern are performed in the lower brainstem and involve neuronal interactions within the medulla and between the medulla and pons. A computational model of the ponto-medullary respiratory network has been developed by incorporating existing experimental data on the medullary neural circuits and possible interactions between the medulla and po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 77 4 شماره
صفحات -
تاریخ انتشار 1997